Iconically motivated subject drop in two sign languages

Marloes Oomen & Vadim Kimmelman Syntax of the World's Languages 8 03-09-2018

Amsterdam Center for Language and Communication

Verb types (Padden 1988)

1. Agreement verbs

2. Spatial verbs

HELP

BEAT

Plain verbs 3.

(Examples from DGS Corpus)

Plain verbs (Padden 1988)

We make a subdivision:

A. Body-anchored verbs

B. Neutral verbs

(Examples from DGS Corpus)

Overview

- 1. Null subjects in sign languages
- 2. Hypothesis
- 3. Data and annotation
- 4. Results
- 5. Statistical analysis
- 6. Conclusions

Null subjects in sign languages

Lillo-Martin (1986, 1991):

• American SL has two types of null arguments:

- 1. Empty category *pro* licensed by agreement: agreement verbs
- 2. Variable bound by an empty topic: agreement + plain verbs

Glück & Pfau (1998) and Bos (1993) report similar results for German SL (DGS) and SL of the Netherlands.

Bahan et al. (2000):

- There is always agreement in American SL:
 - 1. Manual (agreement verbs)
 - 2. Non-manual (all verbs): head tilt/eye gaze

 \rightarrow Subject drop is licensed under either form of agreement.

Hypothesis

- Subjects in clauses with body-anchored verbs can only be dropped when they are *first person* (based on Oomen 2017).
 → Iconicity effect
- 2. In clauses with neutral verbs, subjects of all persons can be dropped.
- \rightarrow We investigate two sign languages:
 - German Sign Language (DGS)
 - Russian Sign Language (RSL)

Data

- DGS Corpus: subset of 58 dialogues (~8h30) (Blanck et al. 2010)
- RSL corpus: ~230 mostly monologues (~5h30) (Burkova 2015)
- Verbs selected based on 80 verb meanings from ValPaL list (Hartmann et al. 2013; Malchukov & Comrie 2015)

Tokens identified (excl. impersonals):

- DGS: 630 tokens
- RSL: 220 tokens

Annotation

- 1. Verb, e.g. BOIL, BE-SAD1, LOOK-AT2...
- 2. Verb type:
 - Body-anchored
 - Neutral
- 3. Subject referent:
 - Person: 1/2*/3
 - Overtness: O/N

Results

DGS:

RSL:

Body-anchored (N=471)	Overt	Null	Body-anchored (N=151)	Overt	Null
1st	174	103	1st	21	37
3rd	141	10	3rd	64	7

Neutral (N=159)	Overt	Null	Neutral (N=69)	Overt	Null
1st	41	30	1st	6	3
3rd	60	20	3rd	36	23

The exceptions

Expectation:

- Categorical pattern (i.e. no null 3rd person subjects with bodyanchored verbs)
- Reality
 - Very few examples, but how to assess it?
- Solution 1: statistical analysis
- Solution 2: look at counterexamples

Solution 1

- Mixed-effect logistic regression
 - Dependent variable: 3N; binary
 - Independent variable: verb type
 - Random factors: verb, signer
 - Hypothesis: 3N are significantly less likely with body-anchored verbs
- Result:
 - <u>Significant negative effect of body-anchored verb type</u> in both languages

Solution 2

Possible explanations:

- Example can be interpreted as impersonal construction
- Person of the subject unclear from context (\rightarrow can be first person)
- Very slight pointing present (\rightarrow subject is in fact overt)
- 2 examples in RSL: parentheticals

Conclusions

- Body-anchored verbs and neutral verbs in RSL and DGS behave differently w.r.t. subject drop patterns.
 - Body-anchored verbs allow subject drop when the subject is first person only.
 - \rightarrow iconicity effect: default first-person interpretation.
 - \rightarrow Modality-specific constraint.
 - Neutral verbs do not pose constraints on subject drop.

This research is carried out as part of the project "Argument structure in three sign languages: typological and theoretical aspects", funded by the Dutch Science Foundation (NWO), grant no. 360-70-520.

14

References

- Bahan, Benjamin, et al. 2000. The licensing of null arguments in American Sign Language. *Linguistic Inquiry* 31. 1-27.
- Blanck, Dolly, et al. 2010. The DGS Corpus project: Development of a corpus based electronic dictionary German Sign Language - German. Poster presented at *Theoretical Issues in Sign Language Research* 10, West Lafayette, IN. Retrieved from <u>https://www.sign-lang.uni-hamburg.de/dgskorpus/index.php/publications.html</u>.
- **Bos, Heleen F.** 1993. Agreement and prodrop in Sign Language of the Netherlands. *Linguistics in Amsterdam* 10(1). 37-47.
- Burkova, Svetlana. 2015. Russian Sign Language Corpus. http://rsl.nstu.ru/ (1 April, 2018).
- Glück, Susanne & Roland Pfau. 1998. On classifying classification as a class of inflection in German Sign Language. In Tina Cambier-Langeveld, Anikó Lipták & Michael Redford (eds.), *ConSOLE VI Proceedings*, 59-74. Leiden: SOLE.
- Hartmann, Irene, Martin Haspelmath, & Bradley Taylor (Eds.). 2013. *Valency Patterns Leipzig*: Leipzig: Max Planck Institute for Evolutionary Anthropology. Retrieved from http://valpal.info/.
- Lillo-Martin, Diane. 1986. Two kinds of null arguments in American Sign Language. *Natural Language & Linguistic Theory* 4. 415-444.
- Lillo-Martin, Diane. 1991. Universal Grammar and American Sign Language: Setting the null argument parameters. In *Studies in Theoretical Psycholinguistics.* Dordrecht: Kluwer.
- Malchukov, Andrej & Bernard Comrie (Eds.). 2015. Valency classes in the world's languages. Berlin: De Gruyter Mouton.
- **Oomen, Marloes.** 2017. Iconicity in argument structure: Psych-verbs in Sign Language of the Netherlands. *Sign Language & Linguistics* 20(1), 55-108.
- Padden, Carol. 1988. Interaction of morphology and syntax in American Sign Language. Outstanding Dissertations in Linguistics. New York, NY: Garland.

What's role shift?

- A mechanism to construct the thoughts, utterances, or actions of a referent; triggers a context shift.
- Shoulder shift; facial expressions; change in eye gaze direction:

BEAR / CL(w/e):MOVE / **BE-NERVOUS** 'The bear approached. [The boy] got nervous.'

Results – examples with role shift

DGS:			RSL:		
Body-anchored (N=100)	Overt	Non-overt	Body-anchored (N=200)	Overt	Non-overt
1st	41	15	1st	42	49
2nd	0	3	2nd	0	2
3rd	16	25	3rd	28	79
Neutral (N=13)	Overt	Non-overt	Neutral (N=34)	Overt	Non-overt
1st	5	2	1st	8	13
2nd	0	0	2nd	0	0
3rd	2	4	3rd	6	7

_

- Expectation: categorical pattern (no non-overt 3rd person subjects with body-anchored verbs
- Reality: very few examples, but how to assess it?
- Solution 1a: mixed-effect logistic regression
 - Dependent variable: 3N (3rd person non-overt); binary
 - Independent variables: verb type, role shift
 - Random factors: verb, signer
 - **Hypothesis**: 3N are significantly less likely with body-anchored verbs without role shift

- Expectation: categorical pattern (no non-overt 3rd person subjects with body-anchored verbs
- Reality: very few examples, but how to assess it?
- Solution 1b: mixed-effect logistic regression without role shift
 - Dependent variable: 3N; binary
 - Independent variables: verb type
 - Random factors: verb, signer
 - Hypothesis: 3N are significantly less likely with body-anchored verbs

- Expectation: categorical pattern (no non-overt 3rd person subjects with body-anchored verbs
- Reality: very few examples, but how to assess it?
- Solutions 1a-b: statistical analysis
- Solution 2: look at counterexamples in detail, try to find out what is going on there

- Model 1: predicting 3N based on verb type and role shift:
 - <u>Significant negative effect of body-anchored verb type</u> in both languages
 - Significant positive effect of role shift in both languages
 - Significant positive interaction in RSL, non-significant positive interaction in DGS
- Model 2: predicting 3N based on verb type (no role shift)
 - <u>Significant negative effect of body-anchored verb type</u> in both languages

Hypothesis confirmed